Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(49): eadj5539, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064553

RESUMO

Eukaryotic voltage-gated K+ channels have been extensively studied, but the structural bases for some of their most salient functional features remain to be established. C-type inactivation, for example, is an auto-inhibitory mechanism that confers temporal resolution to their signal-firing activity. In a recent breakthrough, studies of a mutant of Shaker that is prone to inactivate indicated that this process entails a dilation of the selectivity filter, the narrowest part of the ion conduction pathway. Here, we report an atomic-resolution cryo-electron microscopy structure that demonstrates that the wild-type channel can also adopt this dilated state. All-atom simulations corroborate this conformation is congruent with the electrophysiological characteristics of the C-type inactivated state, namely, residual K+ conductance and altered ion specificity, and help rationalize why inactivation is accelerated or impeded by certain mutations. In summary, this study establishes the molecular basis for an important self-regulatory mechanism in eukaryotic K+ channels, laying a solid foundation for further studies.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Microscopia Crioeletrônica , Dilatação , Ativação do Canal Iônico/fisiologia
2.
Nature ; 622(7982): 410-417, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758949

RESUMO

The Kv2.1 voltage-activated potassium (Kv) channel is a prominent delayed-rectifier Kv channel in the mammalian central nervous system, where its mechanisms of activation and inactivation are critical for regulating intrinsic neuronal excitability1,2. Here we present structures of the Kv2.1 channel in a lipid environment using cryo-electron microscopy to provide a framework for exploring its functional mechanisms and how mutations causing epileptic encephalopathies3-7 alter channel activity. By studying a series of disease-causing mutations, we identified one that illuminates a hydrophobic coupling nexus near the internal end of the pore that is critical for inactivation. Both functional and structural studies reveal that inactivation in Kv2.1 results from dynamic alterations in electromechanical coupling to reposition pore-lining S6 helices and close the internal pore. Consideration of these findings along with available structures for other Kv channels, as well as voltage-activated sodium and calcium channels, suggests that related mechanisms of inactivation are conserved in voltage-activated cation channels and likely to be engaged by widely used therapeutics to achieve state-dependent regulation of channel activity.


Assuntos
Ativação do Canal Iônico , Mutação , Canais de Potássio Shab , Animais , Humanos , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico/genética , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Canais de Potássio Shab/ultraestrutura , Espasmos Infantis/genética
3.
Elife ; 122023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199723

RESUMO

The cation-permeable TRPV2 channel is important for cardiac and immune cell function. Cannabidiol (CBD), a non-psychoactive cannabinoid of clinical relevance, is one of the few molecules known to activate TRPV2. Using the patch-clamp technique, we discover that CBD can sensitize current responses of the rat TRPV2 channel to the synthetic agonist 2-aminoethoxydiphenyl borate (2-APB) by over two orders of magnitude, without sensitizing channels to activation by moderate (40°C) heat. Using cryo-EM, we uncover a new small-molecule binding site in the pore domain of rTRPV2 in addition to a nearby CBD site that had already been reported. The TRPV1 and TRPV3 channels are also activated by 2-APB and CBD and share multiple conserved features with TRPV2, but we find that strong sensitization by CBD is only observed in TRPV3, while sensitization for TRPV1 is much weaker. Mutations at non-conserved positions between rTRPV2 and rTRPV1 in either the pore domain or the CBD sites failed to confer strong sensitization by CBD in mutant rTRPV1 channels. Together, our results indicate that CBD-dependent sensitization of rTRPV2 channels engages multiple channel regions, and that the difference in sensitization strength between rTRPV2 and rTRPV1 channels does not originate from amino acid sequence differences at the CBD binding site or the pore domain. The remarkably robust effect of CBD on TRPV2 and TRPV3 channels offers a promising new tool to both understand and overcome one of the major roadblocks in the study of these channels - their resilience to activation.


Assuntos
Canabidiol , Canabinoides , Ratos , Animais , Canabidiol/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura Alta , Mutação
4.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747846

RESUMO

The cation-permeable TRPV2 channel is essential for cardiac and immune cells. Cannabidiol (CBD), a non-psychoactive cannabinoid of clinical relevance, is one of the few molecules known to activate TRPV2. Using the patch-clamp technique we discover that CBD can sensitize current responses of the rat TRPV2 channel to the synthetic agonist 2-aminoethoxydiphenyl borate (2- APB) by over two orders of magnitude, without sensitizing channels to activation by moderate (40 °C) heat. Using cryo-EM we uncover a new small-molecule binding site in the pore domain of rTRPV2 that can be occupied by CBD in addition to a nearby CBD site that had already been reported. The TRPV1 and TRPV3 channels share >40% sequence identity with TRPV2 are also activated by 2-APB and CBD, but we only find a strong sensitizing effect of CBD on the response of mouse TRPV3 to 2-APB. Mutations at non-conserved positions between rTRPV2 and rTRPV1 in either the pore domain or the CBD sites failed to confer strong sensitization by CBD in mutant rTRPV1 channels. Together, our results indicate that CBD-dependent sensitization of TRPV2 channels engages multiple channel regions and possibly involves more than one CBD and 2-APB sites. The remarkably robust effect of CBD on TRPV2 and TRPV3 channels offers a promising new tool to both understand and overcome one of the major roadblocks in the study of these channels - their resilience to activation.

5.
Sci Adv ; 8(11): eabm7814, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302848

RESUMO

Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.

6.
Theranostics ; 10(20): 9153-9171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802184

RESUMO

Background: Cancer-specific ligands have been of great interest as pharmaceutical carriers due to the potential for site-specific delivery. In particular, cancer-specific peptides have many advantages over nanoparticles and antibodies, including high biocompatibility, low immunogenicity, and the formation of nontoxic metabolites. The goal of the present study was the development of a novel cancer-specific ligand. Methods: Cancer-specific peptide ligands were screened using a one-bead-one-compound (OBOC) combinatorial method combined with a multiple-antigen-peptide (MAP) synthesis method. The specificity of the peptide ligands toward cancer cells was tested in vitro using a whole-cell binding assay, flow cytometry, and fluorescence confocal microscopy. The tissue distribution profile and therapeutic efficacy of a paclitaxel (PTX)-conjugated peptide ligand was assessed in vivo using xenograft mouse models. Results: We discovered that AGM-330 specifically bound to cancer cells in vitro and in vivo. Treatment with PTX-conjugated AGM-330 dramatically inhibited cancer cell growth in vitro and in vivo compared to treatment with PTX alone. The results of pull-down assay and LC-MS/MS analyses showed that membrane nucleolin (NCL) was the target protein of AGM-330. Although NCL is known as a nuclear protein, we observed that it was overexpressed on the membranes of cancer cells. In particular, membrane NCL neutralization inhibited growth in cancer cells in vitro. Conclusions: In summary, our findings indicated that NCL-targeting AGM-330 has great potential for use in cancer diagnosis and targeted drug delivery in cancer therapy.


Assuntos
Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HCT116 , Células HT29 , Humanos , Células Jurkat , Ligantes , Células MCF-7 , Camundongos , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Medicina de Precisão/métodos , Espectrometria de Massas em Tandem/métodos
7.
J Biol Chem ; 294(1): 231-245, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420431

RESUMO

Wnt proteins regulate a large number of processes, including cellular growth, differentiation, and tissue homeostasis, through the highly conserved Wnt signaling pathway in metazoans. Porcupine (PORCN) is an endoplasmic reticulum (ER)-resident integral membrane enzyme that catalyzes posttranslational modification of Wnts with palmitoleic acid, an unsaturated lipid. This unique form of lipidation with palmitoleic acid is a vital step in the biogenesis and secretion of Wnt, and PORCN inhibitors are currently in clinical trials for cancer treatment. However, PORCN-mediated Wnt lipidation has not been reconstituted in vitro with purified enzyme. Here, we report the first successful purification of human PORCN and confirm, through in vitro reconstitution with the purified enzyme, that PORCN is necessary and sufficient for Wnt acylation. By systematically examining a series of substrate variants, we show that PORCN intimately recognizes the local structure of Wnt around the site of acylation. Our in vitro assay enabled us to examine the activity of PORCN with a range of fatty acyl-CoAs with varying length and unsaturation. The selectivity of human PORCN across a spectrum of fatty acyl-CoAs suggested that the kink in the unsaturated acyl chain is a key determinant of PORCN-mediated catalysis. Finally, we show that two putative PORCN inhibitors that were discovered with cell-based assays indeed target human PORCN. Together, these results provide discrete, high-resolution biochemical insights into the mechanism of PORCN-mediated Wnt acylation and pave the way for further detailed biochemical and structural studies.


Assuntos
Acil Coenzima A/química , Aciltransferases/química , Lipoilação , Proteínas de Membrana/química , Proteínas Wnt/química , Acil Coenzima A/metabolismo , Acilação , Aciltransferases/genética , Aciltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
8.
Elife ; 72018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30109985

RESUMO

Voltage-activated potassium (Kv) channels open to conduct K+ ions in response to membrane depolarization, and subsequently enter non-conducting states through distinct mechanisms of inactivation. X-ray structures of detergent-solubilized Kv channels appear to have captured an open state even though a non-conducting C-type inactivated state would predominate in membranes in the absence of a transmembrane voltage. However, structures for a voltage-activated ion channel in a lipid bilayer environment have not yet been reported. Here we report the structure of the Kv1.2-2.1 paddle chimera channel reconstituted into lipid nanodiscs using single-particle cryo-electron microscopy. At a resolution of ~3 Å for the cytosolic domain and ~4 Å for the transmembrane domain, the structure determined in nanodiscs is similar to the previously determined X-ray structure. Our findings show that large differences in structure between detergent and lipid bilayer environments are unlikely, and enable us to propose possible structural mechanisms for C-type inactivation.


Assuntos
Canal de Potássio Kv1.2/ultraestrutura , Bicamadas Lipídicas/química , Nanocompostos/ultraestrutura , Canais de Potássio Shab/ultraestrutura , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Ativação do Canal Iônico , Canal de Potássio Kv1.2/química , Nanocompostos/química , Potássio/química , Conformação Proteica , Ratos , Canais de Potássio Shab/química
9.
Science ; 359(6372): 160-161, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29326261
10.
Proc Natl Acad Sci U S A ; 115(2): E317-E324, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279388

RESUMO

The TRPV1 channel is a sensitive detector of pain-producing stimuli, including noxious heat, acid, inflammatory mediators, and vanilloid compounds. Although binding sites for some activators have been identified, the location of the temperature sensor remains elusive. Using available structures of TRPV1 and voltage-activated potassium channels, we engineered chimeras wherein transmembrane regions of TRPV1 were transplanted into the Shaker Kv channel. Here we show that transplanting the pore domain of TRPV1 into Shaker gives rise to functional channels that can be activated by a TRPV1-selective tarantula toxin that binds to the outer pore of the channel. This pore-domain chimera is permeable to Na+, K+, and Ca2+ ions, and remarkably, is also robustly activated by noxious heat. Our results demonstrate that the pore of TRPV1 is a transportable domain that contains the structural elements sufficient for activation by noxious heat.


Assuntos
Superfamília Shaker de Canais de Potássio/metabolismo , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Ratos , Proteínas Recombinantes de Fusão
11.
Elife ; 52016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27177419

RESUMO

The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin(RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1.


Assuntos
Diterpenos/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Fenômenos Bioquímicos , Fenômenos Eletrofisiológicos , Técnicas de Patch-Clamp , Ligação Proteica , Conformação Proteica , Canais de Cátion TRPV/química
12.
Elife ; 52016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26880553

RESUMO

Venom toxins are invaluable tools for exploring the structure and mechanisms of ion channels. Here, we solve the structure of double-knot toxin (DkTx), a tarantula toxin that activates the heat-activated TRPV1 channel. We also provide improved structures of TRPV1 with and without the toxin bound, and investigate the interactions of DkTx with the channel and membranes. We find that DkTx binds to the outer edge of the external pore of TRPV1 in a counterclockwise configuration, using a limited protein-protein interface and inserting hydrophobic residues into the bilayer. We also show that DkTx partitions naturally into membranes, with the two lobes exhibiting opposing energetics for membrane partitioning and channel activation. Finally, we find that the toxin disrupts a cluster of hydrophobic residues behind the selectivity filter that are critical for channel activation. Collectively, our findings reveal a novel mode of toxin-channel recognition that has important implications for the mechanism of thermosensation.


Assuntos
Membrana Celular/metabolismo , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Ligação Proteica
13.
Elife ; 52016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26882503

RESUMO

TRPV1 channels in sensory neurons are integrators of painful stimuli and heat, yet how they integrate diverse stimuli and sense temperature remains elusive. Here, we show that external sodium ions stabilize the TRPV1 channel in a closed state, such that removing the external ion leads to channel activation. In studying the underlying mechanism, we find that the temperature sensors in TRPV1 activate in two steps to favor opening, and that the binding of sodium to an extracellular site exerts allosteric control over temperature-sensor activation and opening of the pore. The binding of a tarantula toxin to the external pore also exerts control over temperature-sensor activation, whereas binding of vanilloids influences temperature-sensitivity by largely affecting the open/closed equilibrium. Our results reveal a fundamental role of the external pore in the allosteric control of TRPV1 channel gating and provide essential constraints for understanding how these channels can be tuned by diverse stimuli.


Assuntos
Íons/metabolismo , Sódio/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação Alostérica , Benzaldeídos/metabolismo , Sítios de Ligação , Ligação Proteica , Venenos de Aranha/metabolismo
14.
Elife ; 4: e06774, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948544

RESUMO

Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/química , Canais Iônicos Sensíveis a Ácido/química , Proteínas de Artrópodes/química , Neurotoxinas/química , Peptídeos/química , Canais de Potássio Shab/química , Venenos de Aranha/química , Bloqueadores do Canal Iônico Sensível a Ácido/síntese química , Bloqueadores do Canal Iônico Sensível a Ácido/toxicidade , Canais Iônicos Sensíveis a Ácido/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/síntese química , Proteínas de Artrópodes/toxicidade , Expressão Gênica , Ativação do Canal Iônico , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Neurotoxinas/síntese química , Neurotoxinas/toxicidade , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Peptídeos/síntese química , Peptídeos/toxicidade , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência de Aminoácidos , Canais de Potássio Shab/antagonistas & inibidores , Canais de Potássio Shab/genética , Venenos de Aranha/síntese química , Venenos de Aranha/toxicidade , Aranhas , Lipossomas Unilamelares/química , Xenopus laevis
15.
PLoS One ; 7(12): e51516, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23240036

RESUMO

A unique peptide toxin, named double-knot toxin (DkTx), was recently purified from the venom of the tarantula Ornithoctonus huwena and was found to stably activate TRPV1 channels by targeting the outer pore domain. DkTx has been shown to consist of two inhibitory cysteine-knot (ICK) motifs, referred to as K1 and K2, each containing six cysteine residues. Beyond this initial characterization, however, the structural and functional details about DkTx remains elusive in large part due to the lack of a high yielding methodology for the synthesis and folding of this cysteine-rich peptide. Here, we overcome this obstacle by generating pure DkTx in quantities sufficient for structural and functional analyses. Our methodology entails expression of DkTx in E. coli followed by oxidative folding of the isolated linear peptide. Upon screening of various oxidative conditions for optimizing the folding yield of the toxin, we observed that detergents were required for efficient folding of the linear peptide. Our synthetic DkTx co-eluted with the native toxin on HPLC, and irreversibly activated TRPV1 in a manner identical to native DkTx. Interestingly, we find that DkTx has two interconvertible conformations present in a 1∶6 ratio at equilibrium. Kinetic analysis of DkTx folding suggests that the K1 and K2 domains influence each other during the folding process. Moreover, the CD spectra of the toxins shows that the secondary structures of K1 and K2 remains intact even after separating the two knots. These findings provide a starting point for detailed studies on the structural and functional characterization of DkTx and utilization of this toxin as a tool to explore the elusive mechanisms underlying the polymodal gating of TRPV1.


Assuntos
Peptídeos , Dobramento de Proteína , Venenos de Aranha , Aranhas/química , Canais de Cátion TRPV/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cisteína/química , Cinética , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Peptídeos/síntese química , Peptídeos/química , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Venenos de Aranha/química , Venenos de Aranha/farmacocinética , Canais de Cátion TRPV/antagonistas & inibidores , Proteínas de Xenopus/antagonistas & inibidores , Xenopus laevis/metabolismo
16.
Biochemistry ; 51(9): 1862-73, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22329781

RESUMO

Kurtoxin is a 63-amino acid polypeptide isolated from the venom of the South African scorpion Parabuthus transvaalicus. It is the first and only peptide ligand known to interact with Cav3 (T-type) voltage-gated Ca(2+) channels with high affinity and to modify the voltage-dependent gating of these channels. Here we describe the nuclear magnetic resonance (NMR) solution structure of kurtoxin determined using two- and three-dimensional NMR spectroscopy with dynamical simulated annealing calculations. The molecular structure of the toxin was highly similar to those of scorpion α-toxins and contained an α-helix, three ß-strands, and several turns stabilized by four disulfide bonds. This so-called "cysteine-stabilized α-helix and ß-sheet (CSαß)" motif is found in a number of functionally varied small proteins. A detailed comparison of the backbone structure of kurtoxin with those of the scorpion α-toxins revealed that three regions [first long loop (Asp(8)-Ile(15)), ß-hairpin loop (Gly(39)-Leu(42)), and C-terminal segment (Arg(57)-Ala(63))] in kurtoxin significantly differ from the corresponding regions in scorpion α-toxins, suggesting that these regions may be important for interacting with Cav3 (T-type) Ca(2+) channels. In addition, the surface profile of kurtoxin shows a larger and more focused electropositive patch along with a larger hydrophobic surface compared to those seen on scorpion α-toxins. These distinct surface properties of kurtoxin could explain its binding to Cav3 (T-type) voltage-gated Ca(2+) channels.


Assuntos
Canais de Cálcio/química , Venenos de Escorpião/química , Animais , Canais de Cálcio/metabolismo , Cristalografia por Raios X , Ativação do Canal Iônico , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Venenos de Escorpião/metabolismo , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...